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Unlike protein in general, intrinsically
disordered protein (IDP) derives its
function from its low complexity
domain. This domain confers sensitivity
and adaptibility towards fluctuations in
physico-chemical variables. Thus, they
become indispensable in numerous
cellular mechanisms. Examples include
Prothymosin Alpha (ProT𝛼) and Myelin
Basic Protein (MBP). The former is
known to form a complex with histone
H1 in chromatin modification while the
latter is able to undergo LLPS in myelin
biogenesis.

Intrinsically disordered protein

§ 112 amino acids: dominated by Aspartic acid and
Glutamic acid

§ No secondary structures found as a result of low
number of hydrophobic residues

Nanosecond dynamics and internal friction

Methods
§ Small angle X-ray scattering

§ Geometry
§ Compactness

§ Neutron spin-echo spectroscopy
§ Nano second dynamics

§ Theoretical model
§ Polymer with excluded volume
§ Flexible cylinder
§ Zimm / ZIF

Aims
Quantitative description of the structure
and dynamics of IDPs under the effect
of GndCl. The influence of intrinsic
properties of said IDP is also taken into
account.

SAXS/SANS

Internal friction

§ 169 amino acids: populated by positively charged
residues and a number of hydrophobic ones

§ Small portion of secondary structure exist in native
condition
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Zimm model
§ Beads connected by entropic

spring
§ Rouse model with

hydrodynamic interaction
ZIF model
§ Internal friction: microscopic

interaction between beads
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Collapse and expansion

Semi-flexibility

Generalized Gauss model
§ GndCl has salting-in effect at lower

concentration, followed by salting-out
when further increased. Cut-off at 1 M
for ProT𝛼 and 200 mM for MBP.

§ The scaling exponent at 0M GndCl is
0.6 for ProT𝛼 and 0.42 for MBP.
Indicating that ProT𝛼 is fully unfolded
in native while MBP is relatively more
compact.
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Flexible Cylinder model
§ Upon adding GndCl, ProT𝛼 becomes

more flexible while MBP stiffer,
§ MBP at GndCl concentration lower

than 200 mM is ignored due to the
influence from secondary structure.

§ Despite being different, both IDPs
behave similarly at high GndCl
concentration.

A model of ProT𝛼 (left) and MBP (right) generated by
EOM. The chain is oriented such as it starts with the
N terminus on the left and C terminus on the right.
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§ ProT𝛼 (3 wt%) is measured at IN15
and MBP (5 wt%) at J-NSE.

§ Dashed and solid line are fit of the
data with Zimm and ZIF model
respectively.

§ 𝜏! is found to be 0 for ProT𝛼 at 0M
GndCl. Then becomes larger as the
protein collapse (1M) and finally
converges at non zero value.

§ At denatured state, MBP behaves
similarly as Prot𝛼.
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